In vitro inhibitory effect of 1-aminobenzotriazole on drug oxidations catalyzed by human cytochrome P450 enzymes: a comparison with SKF-525A and ketoconazole.

Article Details

Citation

Emoto C, Murase S, Sawada Y, Jones BC, Iwasaki K

In vitro inhibitory effect of 1-aminobenzotriazole on drug oxidations catalyzed by human cytochrome P450 enzymes: a comparison with SKF-525A and ketoconazole.

Drug Metab Pharmacokinet. 2003;18(5):287-95.

PubMed ID
15618748 [View in PubMed
]
Abstract

1-Aminobenzotriazole (ABT) is widely used as a non-specific inhibitor of animal cytochrome P450 (CYP). In the present study, the inhibitory effect of ABT was investigated on drug oxidations catalyzed by human CYP isoforms. This inhibitory effect was compared with that of SKF-525A, another non-specific inhibitor, and ketoconazole, a potent inhibitor of CYP3A. Bacurovirus-expressed recombinant human CYP isoforms were used as an enzyme source. The specific activities for human CYP isoforms are: phenacetin O-deethylation, for CYP1A2; diclofenac 4'-hydroxylation, for CYP2C9; S-mephenytoin 4'-hydroxylation, for CYP2C19; bufuralol 1'-hydroxylation, for CYP2D6; chlorzoxazone 6-hydroxylation, for CYP2E1; testosterone 6beta-hydroxylation, nifedipine oxidation, and midazolam 1'-hydroxylation, for CYP3A4. ABT inhibited both CYP1A2-dependent activity (Ki=330 microM) and CYP2E1-dependent activity (Ki=8.7 microM). In contrast, SKF-525A weakly inhibited CYP1A2-dependent activities (46% inhibition at 1200 microM) and CYP2E1-dependent activities (65% inhibition at 1000 microM). ABT exhibited the highest Ki value for CYP2C9-dependent diclofenac 4'-hydroxylation among those determined by this assay (Ki=3500 microM). Moreover, SKF-525A showed strong inhibition of CYP2D6-dependent bufuralol 1'-hydroxylation (Ki=0.043 microM). Ketoconazole inhibited all tested drug oxidations, however, its inhibitory effect on CYP1A2-dependent activities was very weak (50% inhibition at 120 microM). ABT, SKF-525A, and ketoconazole showed different selectivity and had a wide range of Ki values for the drug oxidations catalyzed by human CYP enzymes. Therefore, we conclude that inhibitory studies designed to predict the contribution of CYP enzymes to the metabolism of certain compounds should be performed using multiple CYP inhibitors, such as ABT, SKF-525A, and ketoconazole.

DrugBank Data that Cites this Article

Drug Enzymes
Drug Enzyme Kind Organism Ph值armacological Action Actions
Ketoconazole Cytochrome P450 2C19 Protein Humans
Unknown
Inhibitor
Details
Ketoconazole Cytochrome P450 2D6 Protein Humans
Unknown
Inhibitor
Details