60 kDa heat shock protein, mitochondrial
Details
- Name
- 60 kDa heat shock protein, mitochondrial
- Synonyms
-
- 3.6.4.9
- 60 kDa chaperonin
- Chaperonin 60
- CPN60
- Heat shock protein 60
- HSP-60
- HSP60
- HuCHA60
- Mitochondrial matrix protein P1
- P60 lymphocyte protein
- Gene Name
- HSPD1
- Organism
- Humans
- Amino acid sequence
-
>拼箱| BSEQ0049628 | 60 kDa热休克蛋白,mitochondrial MLRLPTVFRQMRPVSRVLAPHLTRAYAKDVKFGADARALMLQGVDLLADAVAVTMGPKGR TVIIEQSWGSPKVTKDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTTTATVLA RSIAKEGFEKISKGANPVEIRRGVMLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDK EIGNIISDAMKKVGRKGVITVKDGKTLNDELEIIEGMKFDRGYISPYFINTSKGQKCEFQ DAYVLLSEKKISSIQSIVPALEIANAHRKPLVIIAEDVDGEALSTLVLNRLKVGLQVVAV KAPGFGDNRKNQLKDMAIATGGAVFGEEGLTLNLEDVQPHDLGKVGEVIVTKDDAMLLKG KGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVLKVGGTSDVEVNEKKDR VTDALNATRAAVEEGIVLGGGCALLRCIPALDSLTPANEDQKIGIEIIKRTLKIPAMTIA KNAGVEGSLIVEKIMQSSSEVGYDAMAGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLT TAEVVVTEIPKEEKDPGMGAMGGMGGGMGGGMF
- Number of residues
- 573
- 分子量
- 61054.17
- Theoretical pI
- Not Available
- GO Classification
-
Functionsapolipoprotein A-I binding/apolipoprotein binding/ATP binding/ATPase activity/chaperone binding/DNA replication origin binding/double-stranded RNA binding/enzyme binding/high-density lipoprotein particle binding/insulin binding/lipopolysaccharide binding/misfolded protein binding/p53 binding/protease binding/protein binding involved in protein folding/protein complex binding/protein heterodimerization activity/RNA binding/single-stranded DNA binding/ubiquitin protein ligase binding/unfolded protein bindingProcesses'de novo' protein folding/activation of cysteine-type endopeptidase activity involved in apoptotic process/apoptotic mitochondrial changes/B cell activation/B cell cytokine production/B cell proliferation/chaperone mediated protein folding requiring cofactor/chaperone-mediated protein complex assembly/chaperone-mediated protein folding/detection of misfolded protein/interaction with symbiont/isotype switching to IgG isotypes/MyD88-dependent toll-like receptor signaling pathway/negative regulation of apoptotic process/negative regulation of apoptotic process in bone marrow/negative regulation of neuron apoptotic process/negative regulation of reactive oxygen species biosynthetic process/positive regulation of apoptotic process/positive regulation of inflammatory response/positive regulation of interferon-alpha production/positive regulation of interferon-gamma production/positive regulation of interleukin-10 production/positive regulation of interleukin-12 production/positive regulation of interleukin-6 production/positive regulation of interleukin-6 secretion/positive regulation of macrophage activation/positive regulation of T cell activation/positive regulation of T cell mediated immune response to tumor cell/positive regulation of tumor necrosis factor secretion/protein import into mitochondrial intermembrane space/protein maturation/protein refolding/protein stabilization/regulation of transcription from RNA polymerase II promoter/response to activity/response to ATP/response to cocaine/response to cold/response to drug/response to estrogen/response to glucocorticoid/response to heat/response to hydrogen peroxide/response to hypoxia/response to ischemia/response to lipopolysaccharide/response to unfolded protein/Tcell activation/病毒的过程Componentscell surface/clathrin-coated pit/coated vesicle/cytoplasm/cytosol/early endosome/extracellular exosome/extracellular matrix/extracellular space/Golgi apparatus/lipopolysaccharide receptor complex/membrane/膜筏/mitochondrial crista/mitochondrial inner membrane/mitochondrial matrix/mitochondrion/myelin sheath/peroxisomal matrix/plasma membrane/protein complex/rough endoplasmic reticulum/secretory granule/zymogen granule
- General Function
- Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:1346131, PubMed:11422376). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable).
- Specific Function
- Apolipoprotein a-i binding
- Pfam Domain Function
-
- Cpn60_TCP1 (PF00118)
- Transmembrane Regions
- Not Available
- Cellular Location
- Mitochondrion matrix
- Gene sequence
-
>lcl|BSEQ0049629|60 kDa heat shock protein, mitochondrial (HSPD1) ATGCTTCGGTTACCCACAGTCTTTCGCCAGATGAGACCGGTGTCCAGGGTACTGGCTCCT CATCTCACTCGGGCTTATGCCAAAGATGTAAAATTTGGTGCAGATGCCCGAGCCTTAATG CTTCAAGGTGTAGACCTTTTAGCCGATGCTGTGGCCGTTACAATGGGGCCAAAGGGAAGA ACAGTGATTATTGAGCAGAGTTGGGGAAGTCCCAAAGTAACAAAAGATGGTGTGACTGTT GCAAAGTCAATTGACTTAAAAGATAAATACAAAAACATTGGAGCTAAACTTGTTCAAGAT GTTGCCAATAACACAAATGAAGAAGCTGGGGATGGCACTACCACTGCTACTGTACTGGCA CGCTCTATAGCCAAGGAAGGCTTCGAGAAGATTAGCAAAGGTGCTAATCCAGTGGAAATC AGGAGAGGTGTGATGTTAGCTGTTGATGCTGTAATTGCTGAACTTAAAAAGCAGTCTAAA CCTGTGACCACCCCTGAAGAAATTGCACAGGTTGCTACGATTTCTGCAAACGGAGACAAA GAAATTGGCAATATCATCTCTGATGCAATGAAAAAAGTTGGAAGAAAGGGTGTCATCACA GTAAAGGATGGAAAAACACTGAATGATGAATTAGAAATTATTGAAGGCATGAAGTTTGAT CGAGGCTATATTTCTCCATACTTTATTAATACATCAAAAGGTCAGAAATGTGAATTCCAG GATGCCTATGTTCTGTTGAGTGAAAAGAAAATTTCTAGTATCCAGTCCATTGTACCTGCT CTTGAAATTGCCAATGCTCACCGTAAGCCTTTGGTCATAATCGCTGAAGATGTTGATGGA GAAGCTCTAAGTACACTCGTCTTGAATAGGCTAAAGGTTGGTCTTCAGGTTGTGGCAGTC AAGGCTCCAGGGTTTGGTGACAATAGAAAGAACCAGCTTAAAGATATGGCTATTGCTACT GGTGGTGCAGTGTTTGGAGAAGAGGGATTGACCCTGAATCTTGAAGACGTTCAGCCTCAT GACTTAGGAAAAGTTGGAGAGGTCATTGTGACCAAAGACGATGCCATGCTCTTAAAAGGA AAAGGTGACAAGGCTCAAATTGAAAAACGTATTCAAGAAATCATTGAGCAGTTAGATGTC ACAACTAGTGAATATGAAAAGGAAAAACTGAATGAACGGCTTGCAAAACTTTCAGATGGA GTGGCTGTGCTGAAGGTTGGTGGGACAAGTGATGTTGAAGTGAATGAAAAGAAAGACAGA GTTACAGATGCCCTTAATGCTACAAGAGCTGCTGTTGAAGAAGGCATTGTTTTGGGAGGG GGTTGTGCCCTCCTTCGATGCATTCCAGCCTTGGACTCATTGACTCCAGCTAATGAAGAT CAAAAAATTGGTATAGAAATTATTAAAAGAACACTCAAAATTCCAGCAATGACCATTGCT AAGAATGCAGGTGTTGAAGGATCTTTGATAGTTGAGAAAATTATGCAAAGTTCCTCAGAA GTTGGTTATGATGCTATGGCTGGAGATTTTGTGAATATGGTGGAAAAAGGAATCATTGAC CCAACAAAGGTTGTGAGAACTGCTTTATTGGATGCTGCTGGTGTGGCCTCTCTGTTAACT ACAGCAGAAGTTGTAGTCACAGAAATTCCTAAAGAAGAGAAGGACCCTGGAATGGGTGCA ATGGGTGGAATGGGAGGTGGTATGGGAGGTGGCATGTTCTAA
- Chromosome Location
- 2
- Locus
- 2q33.1
- External Identifiers
-
Resource Link UniProtKB ID P10809 UniProtKB Entry Name CH60_HUMAN HGNC ID HGNC:5261 - General References
-
- Jindal S, Dudani AK, Singh B, Harley CB, Gupta RS: Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol. 1989 May;9(5):2279-83. [Article]
- Venner TJ, Singh B, Gupta RS: Nucleotide sequences and novel structural features of human and Chinese hamster hsp60 (chaperonin) gene families. DNA Cell Biol. 1990 Oct;9(8):545-52. [Article]
- Hansen JJ, Bross P, Westergaard M, Nielsen MN, Eiberg H, Borglum AD, Mogensen J, Kristiansen K, Bolund L, Gregersen N: Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum Genet. 2003 Jan;112(1):71-7. Epub 2002 Oct 16. [Article]
- Ota T,铃木Y, Nishikawa T,大月T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. [Article]
- Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, Ali J, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L, Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M, Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W, Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S, Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L, Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD, Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD, Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH, Wilson RK: Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature. 2005 Apr 7;434(7034):724-31. [Article]
- Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
- Waldinger D, Eckerskorn C, Lottspeich F, Cleve H: Amino-acid sequence homology of a polymorphic cellular protein from human lymphocytes and the chaperonins from Escherichia coli (groEL) and chloroplasts (Rubisco-binding protein). Biol Chem Hoppe Seyler. 1988 Oct;369(10):1185-9. [Article]
- Ward LD, Hong J, Whitehead RH, Simpson RJ: Development of a database of amino acid sequences for human colon carcinoma proteins separated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis. 1990 Oct;11(10):883-91. [Article]
- Nagata K, Ide Y, Takagi T, Ohtani K, Aoshima M, Tozawa H, Nakamura M, Sugamura K: Complex formation of human T-cell leukemia virus type I p40tax transactivator with cellular polypeptides. J Virol. 1992 Feb;66(2):1040-9. [Article]
- Rasmussen RK, Ji H, Eddes JS, Moritz RL, Reid GE, Simpson RJ, Dorow DS: Two-dimensional electrophoretic analysis of human breast carcinoma proteins: mapping of proteins that bind to the SH3 domain of mixed lineage kinase MLK2. Electrophoresis. 1997 Mar-Apr;18(3-4):588-98. [Article]
- Corbett JM, Wheeler CH, Baker CS, Yacoub MH, Dunn MJ: The human myocardial two-dimensional gel protein database: update 1994. Electrophoresis. 1994 Nov;15(11):1459-65. [Article]
- Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J: Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol. 2003 May;21(5):566-9. Epub 2003 Mar 31. [Article]
- Hochstrasser DF, Frutiger S, Paquet N, Bairoch A, Ravier F, Pasquali C, Sanchez JC, Tissot JD, Bjellqvist B, Vargas R, et al.: Human liver protein map: a reference database established by microsequencing and gel comparison. Electrophoresis. 1992 Dec;13(12):992-1001. [Article]
- Aboulaich N, Vainonen JP, Stralfors P, Vener AV: Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem J. 2004 Oct 15;383(Pt 2):237-48. [Article]
- Ji H, Reid GE, Moritz RL, Eddes JS, Burgess AW, Simpson RJ: A two-dimensional gel database of human colon carcinoma proteins. Electrophoresis. 1997 Mar-Apr;18(3-4):605-13. [Article]
- Singh B, Patel HV, Ridley RG, Freeman KB, Gupta RS: Mitochondrial import of the human chaperonin (HSP60) protein. Biochem Biophys Res Commun. 1990 Jun 15;169(2):391-6. [Article]
- Viitanen PV, Lorimer GH, Seetharam R, Gupta RS, Oppenheim J, Thomas JO, Cowan NJ: Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J Biol Chem. 1992 Jan 15;267(2):695-8. [Article]
- Levy-Rimler G, Viitanen P, Weiss C, Sharkia R, Greenberg A, Niv A, Lustig A, Delarea Y, Azem A: The effect of nucleotides and mitochondrial chaperonin 10 on the structure and chaperone activity of mitochondrial chaperonin 60. Eur J Biochem. 2001 Jun;268(12):3465-72. [Article]
- Tanaka Y, Kanai F, Kawakami T, Tateishi K, Ijichi H, Kawabe T, Arakawa Y, Kawakami T, Nishimura T, Shirakata Y, Koike K, Omata M: Interaction of the hepatitis B virus X protein (HBx) with heat shock protein 60 enhances HBx-mediated apoptosis. Biochem Biophys Res Commun. 2004 May 28;318(2):461-9. [Article]
- Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ: Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol. 2005 Jan;23(1):94-101. Epub 2004 Dec 12. [Article]
- Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP: A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006 Oct;24(10):1285-92. Epub 2006 Sep 10. [Article]
- Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [Article]
- Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. [Article]
- Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16. [Article]
- Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [Article]
- Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
- Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y: The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011 Dec;10(12):M111.012658. doi: 10.1074/mcp.M111.012658. Epub 2011 Sep 9. [Article]
- Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570. [Article]
- Rosenow A, Noben JP, Jocken J, Kallendrusch S, Fischer-Posovszky P, Mariman EC, Renes J: Resveratrol-induced changes of the human adipocyte secretion profile. J Proteome Res. 2012 Sep 7;11(9):4733-43. doi: 10.1021/pr300539b. Epub 2012 Aug 27. [Article]
- 默尔N, Feraud O, Gilquin B, Hubstenberger Kieffer-Jacquinot S, Assard N, Bennaceur-Griscelli A, Honnorat J, Baudier J: ATAD3B is a human embryonic stem cell specific mitochondrial protein, re-expressed in cancer cells, that functions as dominant negative for the ubiquitous ATAD3A. Mitochondrion. 2012 Jul;12(4):441-8. doi: 10.1016/j.mito.2012.05.005. Epub 2012 Jun 2. [Article]
- Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [Article]
- Cloutier P, Lavallee-Adam M, Faubert D, Blanchette M, Coulombe B: A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet. 2013;9(1):e1003210. doi: 10.1371/journal.pgen.1003210. Epub 2013 Jan 17. [Article]
- Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]
- Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. [Article]
- Nisemblat S, Yaniv O, Parnas A, Frolow F, Azem A: Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc Natl Acad Sci U S A. 2015 May 12;112(19):6044-9. doi: 10.1073/pnas.1411718112. Epub 2015 Apr 27. [Article]
- Hansen JJ, Durr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, Davoine CS, Brice A, Fontaine B, Gregersen N, Bross P: Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet. 2002 May;70(5):1328-32. Epub 2002 Mar 15. [Article]
- Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Nemirovski A, Shahar E, Ravid S, Luder A, Heno B, Gershoni-Baruch R, Skorecki K, Mandel H: Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet. 2008 Jul;83(1):30-42. doi: 10.1016/j.ajhg.2008.05.016. Epub 2008 Jun 19. [Article]